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Regular and chaotic dynamics in time-dependent relativistic mean-field theory
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Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are
described in the framework of time-dependent relativistic mean-field theory. Time-dependent and self-
consistent calculations that reproduce experimental data on monopole resonarf@bishow that the
motion of the collective coordinate is regular for isoscalar oscillations, and that it becomes chaotic when initial
conditions correspond to the isovector mode. Regular collective dynamics coexists with chaotic oscillations on
the microscopic level. Time histories, Fourier spectra, state-space plots, Posecaians, autocorrelation
functions, and Lyapunov exponents are used to characterize the nonlinear system and to identify chaotic
oscillations. Analogous considerations apply to higher multipolarif®$063-651X97)11711-1

PACS numbd(ps): 05.45+b, 24.60.Lz

[. INTRODUCTION lations in spherical nuclei, but analogous considerations
apply to higher multipolarities. The dynamics of nuclear vi-
In the last two decades many studies have been reportdatations is analyzed in the framework of time-dependent
in which the atomic nucleus has been used as a laborator{glativistic mean-field TDRMF) theory. The model repre-
both experimentally and theoretically, for investigating thesents a relativistic generalization of the time-dependent
transition from order to chaos in quantum dynamical systemslartree-Fock approach. Nuclear dynamics is described by
(for a recent review segl]). Most of these studies have the simultaneous evolution éf single-particle Dirac spinors
concentrated on two major aspedf: generic signatures of in the time-dependent mean fields. Frequencies of eigen-
chaos in local fluctuations and correlations of nuclear levemodes are determined from a Fourier analysis of dynamical
distributions andii) chaos in microscopic and collective dy- quantities. In this microscopic description, self-consistent
namics of realistic many-body systems. In the first case, sigmean-field calculations are performed for static ground-state
natures of quantum chaos have also been studied in the corroperties and time-dependent calculations for monopole ex-
plicated structure of wave functions and randomness ofitations. Because the time evolution is calculated self-
matrix elements of physical operators. On the other hand, theonsistently, the system is intrinsically nonlinear. An advan-
nature of collective nuclear dynamics has been investigatetge of the time-dependent approach is that no assumption
with particular emphasis on the stability of low-lying nuclear about the nature of the mode of vibrations has to be made.
modes in relation to one-body dissipation caused by the de- The article is organized as follows. In Sec. Il we present
formation of the nuclear potential, cluster effects, and Corithe essential features of the time-dependent relativistic mean-
olis forces. The most elementary collective modes in nuclefield model, as well as some details of its application to
are giant resonances. These are highly collective nuclear egpherical nuclei. Time-dependent calculations of isoscalar
citations in which a large fraction of nucleons participate.and isovector monopole oscillations O and *°%b are
They can be described as damped harmonic and anharmorflescribed in Sec. lll. Results of a number of diagnostic tests
density oscillations around the equilibrium ground state. Githat are used to identify chaotic oscillations in the nuclear
ant resonances occur over the whole periodic table and thesiystem are discussed and compared with earlier work. A
characteristic parameters are smooth functions of the magsimmary of our results is presented in Sec. IV.
number. A mean-field model therefore provides an appropri-
ate framework for the description of giant resonances. Regu- IIl. OUTLINE OF THE MODEL

lar and chaotic dynamics in giant nuclear oscillations has he gynamics of collective vibrations in spherical nuclei

been the subject of a number of studies. What has emergeg| pe described in the framework of relativistic mean-field
as a very mterestmg result is that an un_damped. coIIectwePneory [2-5]. In relativistic quantum hadrodynamics the
mode may coexist with chaotic single-particle motion. It ap-, ,cleus is described as a system of Dirac nucleons which

pears that the slowly vibrating self-consistent mean field Cr€jnteract through the exchange of virtual mesons and photons.
ated by the nucleons averages out the random components-io Lagrangian density of the model is

their motion. In all investigations the motion of only one
type of particles has been considered, that is, only the dy- ——. 1 ) ,
namics of isoscalar collective modes. L=d(iy-d—m)y+ 5(d0)"=U(0)— ;Q,, 0"
In the present article we study the difference in the dy-
namics of isoscalar and isovector collective modes. In par-
ticular, we describe isoscalar and isovector monopole oscil-
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The Dirac spinorys denotes the nucleon with mass m,,
m,, andm, are the masses of the meson, thew meson,

and thep meson, andg,,, g,,, andg, are the corresponding

coupling constants for the mesons to the nuclédfr) de-
notes the nonlineas self-interaction,

1

1 1
U(0)=§m§02+ 3020°+ 030", )

and Q#*, R*’, andF*" are field tensor§2].
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Dirac equation is solved at each step in time for a different
basis sef6,7]. Negative-energy components with respect to
the original ground-state basis are taken into account auto-
matically, even if at each time theo-seaapproximation is
applied. It is also assumed that nucleon single-particle states
do not mix isospin.

The ground state of a nucleus is described by the station-
ary self-consistent solution of the coupled system of equa-
tions (3)—(7), for a given number of nucleons and a set of
coupling constants and masses. The solution for the ground

The coupled equations of motion are derived from thestate specifies part of the initial conditions for the time-
Lagrangian densityl). The Dirac equation for the nucleons dependent problem. For a given set of initial conditions, i.e.,

IS

. . > (1—73)
0= —iV—g,0—g,7p—€ A

2
> (1—73)
+B(m+g,0)+g,00+9,7pote€ > Aol i,
()
and the Klein-Gordon equations for the mesons are
(0f=A+m2)o=—g,ps— 207~ gs0®, (4)
(9= A+M)w,=Guiu, (5)
(F=A+m)p,=g,],, (6)
(F—M)A,=eje". (7)

In the relativistic mean-field approximation tie nucleons
described by single-particle spinogg(i=1,2,...A) are
assumed to form tha-particle Slater determinah®) and to

initial values for the densities and currents in E@—(11),

the model describes the time evolution Afsingle-particle
wave functions in the time-dependent mean fields. Retarda-
tion effects for the meson fields are not included; i.e., the
time derivatives?? in the equations of motions for the meson
fields are neglected. This is justified by the large masses in
the meson propagators, causing a short range of the corre-
sponding meson exchange forces. Since there is no system-
atic procedure to derive the initial conditions that character-
ize the motion of a specific mode of the nuclear system, the
description of nuclear dynamics as a time-dependent initial-
value problem is intrinsically semiclassical. The theory can
be quantized by the requirement that there exist time-
periodic solutions of the equations of motion, which give
integer multiples of Planck’s constant for the classical action
along one period8]. For giant resonances the time depen-
dence of collective dynamical quantities is actually not peri-
odic, since generally giant resonances are not stationary
states of the mean-field Hamiltonian. The coupling of the
mean field to the particle continuum allows for the decay of
giant resonances by direct escape of particles. In the limit of
small amplitude oscillations, however, the energy obtained

move independently in the classical meson fields. Thérom the frequency of the oscillation coincides with the ex-
sources of the fields, i.e., densities and currents, are calcgitation energy of the collective state. In Reffg,9,8,17 we

lated in theno-seaapproximation7]: the scalar density

A
ps= ;1 it 8
the isoscalar baryon current
A
=2 iy, )
the isovector baryon current
A
Pe=2 oy T, (10
the electromagnetic current for the photon field,
P S — " 1-7s
Jem:i:1 iV 2 i, (11

have shown that the model reproduces reasonably well the
experimental data on giant resonances in spherical nuclei.
In the present article we apply the model to isoscalar and
isovector monopole oscillations in spherical nuclei. In this
microscopic description, self-consistent mean-field calcula-
tions are performed for static ground-state properties and
time-dependent calculations for monopole excitations. Be-
cause of the self-consistent time evolution, the system is in-
trinsically nonlinear. For a system with spherical symmetry,
the nucleon single-particle spinor is characterized by the an-
gular momentunj, its z projectionm, the paritys, and the

isospint;= * 3 for neutrons and protons:

1 f(O)Pm(6,0.5)|

l[l(r,t,S,t3):F Ig(r)CIDT]m(H,go,S) e IEtXT(IB)'
(12

X - IS the isospin function, the orbital angular momehtand

T are determined by and the parityr, f(r) andg(r) are
radial functions, and;, is the tensor product of the orbital

where the summation is over all occupied states in the Slatetnd spin functions:
determinant®). Negative-energy states do not contribute to

the densities in thaéo-seaapproximation of the stationary
solutions. However, negative energy contributions are in-
cluded implicitly in the time-dependent calculation, since the

Djm(0,0,5)= 2 (3 mlmy|jm)Yym (6,0) xm (S).
msmy
(13)
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In order to excite monopole oscillations, the spherical solu-The collective dynamical variables that characterize vibra-
tion for the ground state has to be initially compressed otions of a nucleus are defined as expectation values of single-
radially expanded by scaling the radial coordinate. The amparticle operators in the time-dependent Slater determinant
plitudesf™" andg™°" of the Dirac spinor are defined as  |®(t)) of occupied states. In the framework of the TDRMF
mo 3 o 3 model the wave function of the nuclear system is a Slater
FTNr o) = (1+a)f(r), g™ rmon) =(1+a)g(r). determinant at all times. For isoscalar monopole vibrations,
the time-dependent monopole moment is defined as

The new coordinates are

2 _E 2
(1. s (r2(0)= 2 (@O (D). 23

For isoscalar oscillations the monopole deformations of the'he corresponding isovector monopole moment is simply
proton and neutron densities have the same sign. To excite 2 5
isovector oscillations, the initial monopole deformation pa- <rp(t)>_<rn(t)>'
rameters of protons and neutrons must have opposite signs.
After the initial deformation(14), the proton and neutron
densities have to be normalized.

The time-dependent Dirac equati8) is reduced to a set
of coupled first-order partial differential equations for the
complex amplitudes andg of proton and neutron states,

Fourier transforms of the collective dynamical variable
determine the frequencies of eigenmodes.

lll. ISOSCALAR AND ISOVECTOR MONOPOLE
OSCILLATIONS

The study of isoscalar monopole resonances in nuclei pro-
9, — X in) g, (16)  Vvides an important source of information on the nuclear mat-
r ter compression modulus,,,,. This quantity is crucial in the
description of properties of nuclei, supernova explosions,
o+ E—iv )f (17) neutron stars, and heavy ion collisions. Modern nonrelativis-
r e tic Hartree-Fock plus random-phase-approximati&PA)
calculations, using both Skyrme and Gogny effective inter-
wherex=*(j+1/2) forj=1+1/2, and the indices 0 and  actions, indicate that the value Kf,, should be in the range
denote the time and radial components of the vector field: 210-220 MeV[12]. In the framework of relativistic mean-
field theory, on the other hand, calculations based on an ef-
(1~ 73) AP (18) fective interaction[10] with nuclear matter compression
2 ' modulusK,,,=250-270 MeV are in better agreement with
. - . . . available data on spherical nuc|éil]. The complete experi-
For a given set of initial conditions, the equations of motion ,ental data set on isoscalar giant monopole resonances

propagate the nuclear system in time. The potentials are SPGMR) has been recently analyzed by Shlomo and Young-

i9,f=(Vo+g,0)f +

i16:9=(Vo—9g,0—2m)g—

Vi=g,0"+g,p5T3te

lutions of the Klein-Gordon equations blood [13]. In Fig. 1 we display results of time-dependent
2 29 relativistic mean-field calculations of isoscalar and isovector
- W—FE-}-mi B(r)=s4(r), (199  oscillations in ?®Pb. The experimental isoscalar GMR en-

ergy in 2°%b is well established at 13:0.3 MeV. Experi-
mental data on isovector giant monopole resonances are

wherem, are meson m far= n nd zer . o .
erem, are meson masses fdr=o, w, andp, and zero_ .\ jess known. The systematics of excitation energies

for the photon. The source terms are calculated from Eqs : )
(8—(11) using in each time step the latest values for thedoes not, in general, depend on the nuclear matter compres

. . sion modulus. The experimental value for the isovector
nucleon amplitudes. The meson fields and electromagnenéMR in 29%p is 26-3 MeV [14]. We have calculated the
potentials are calculated from )

ground state with the NL[l15] parameter set of the effective

o Lagrangian. This effective force has been extensively used in
qﬁ(r):f G¢(r,r’)s¢(r’)r’2dr’, (200  the description of properties of finite nuclei along the valley
0 of B stability [5]. For NL1 (K,,,=211.7 Me\}, we expect

the calculated excitation energy for the isoscalar mode to be

where, for massive fields, approximately 1-2 MeV lower than the average experimen-

1 1 , ) tal value. However, the precise value is not important in the
Gy(r,r')= ﬁrr—,(emzﬂr*f l—e=mglr*r'ly  (21)  present consideration. For the initial deformation parameter
4 in Eq. (14) we have use@&=0.2. In the isoscalar case both

proton and neutron densities are radially expanded, while for
the isovector mode the proton density is initially compressed

1 by the same amount. Therefore, although the initial condi-
Ge(ryr')=r for r>r’, tions are different, in both cases we follow the time evolution

of the same system.

1 In Fig. 1(@ we plot the time history of the isoscalar
Gol(r,r'y=—for r<r’. (220 monopole momenfr?(t)), and in Fig. 1b) the correspond-

r' ing isovector moment is shown. The isoscalar mode displays

and, for the Coulomb field,
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FIG. 1. Time-dependent isoscakar) (a) and isovecto(rf,)—(rﬁ) (b) monopole moments and the corresponding Fourier power spectra
for 2°%Pb. The parameter set of the effective Lagrangian is NL1.

regular undamped oscillations, while for the isovector modanoment and the Fourier spectrum show that the oscillations
we observe strongly damped anharmonic oscillations. In thef the collective coordinate are regular. On the other hand,
right-hand panels we plot the corresponding Fourier powethe appearance of a broad spectrum of frequencies seems to
spectra. The evolution tim&y,,=3000 fmk determines indicate that the isovector oscillations are chaotic. A diagno-
the numerical resolutiodE=2x#Ac/Tg,,==~0.4 MeV in  sis of chaotic vibrations would imply that one has a clear
the frequency domain. The Fourier power spectra are calcudefinition of such motion. For a quantum system, however,
lated by fast Fourier transformin(@FT) using data window- the concept of chaos, especially in time-dependent problems,
ing with the Welch window function. We have verified that is not well defined. And although our description of nuclear
the positions of the main peaks do not depend on the choicebrations is semiclassical, quantum effects like the Pauli
of the window function. We estimate the numerical accuracyprinciple are present in the initial conditions and during the
to ~0.5 MeV. As one would expect for a heavy nucleus,dynamical evolution. A number of diagnostic tests can help
there is very little spectral fragmentation in the isoscalarto identify chaotic oscillations in physical systefii$], and
channel, and a single mode dominates at the excitation esome of them can be applied in the present consideration. In
ergy of 11 MeV. The Fourier spectrum of the isovector modeFigs. 2—4 we display some additional qualitative measures
is strongly fragmented. However, the main peaks are foungvhich can be used to characterize the response of our non-
in the energy region 25-30 MeV, in agreement with thelinear system. In Fig. 2 we have constructed the two-
experimental data. dimensional time-delayed pseudo phase space for isoscalar
For the isoscalar mode, the time history of the monopolda) and isovectorb) oscillations shown in Fig. 1. Since in-

T T
208,
205 |soscalar Monopole 5 Pb Isovector Monopole

50 F pseudo-phase space 4

A 40+ T A
x X FIG. 2. Two-dimensional pseudo phase space
R v for isoscalar(a) and isovector(b) monopole os-
cillations in 2%%Pb.
30 | .
20 L L -15 L
20 30 40 50 -15 -10 -5
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formation is available on the time evolution of just one vari- generated by the self-consistent mean fields. In Fig. 3 we
able, the collective coordinate, one plots the signal versudisplay the corresponding Poincasections constructed
itself, but delayed or advanced by a fixed time constanfrom three-dimensional time-delayed pseudo phase space
[(r2(t)),{r?(t+ 7))]. The idea is that the sign@l®(t+ 7)) is  [{r2(t)),(r2(t+7)),(r?(t+27))], with =20 fmic. The
related to{r2(t)), and should have properties similar to thosePoincaremaps are shov;/n in the plan(aszz(t))=35_ fm? for

in the classical phase plafiér?(t)),(r?(t))]. The choice of the(;soscalar “?Odle ?mj (;)>_=,—9.55ffm hfor_ the |s|0vecto(;

the time delayr is not crucial, except to avoid a natural MOde. respectively. The Poincarep for the isoscalar mode

period of the system. If the motion is chaotic, the trajectorie§°ns'5ts of two sets of closely located points and therefore

in the phase space do not close. For the pseudo phase plat E)m.]s rggular oscillations. Flor ;hef 'SOVGCIOF 030'”6.‘“?”.5
shown in Fig. 2, we have taker= 20 fm/c. The phase space € roincarenap appears as a cloud ot unorganized points in

trajectories for the isoscalar mode are closed ellipses, ind|t-he phase plane. Such a map indicates stochastic motion.

cating regular oscillations. For the isovector oscillations, Orf\nother measure that is related to the Fourier transform is

the other hand, the trajectories are completely chaotic. ThEhe autocorrelation function
strong damping results from one-body proces$gsescape

of nucleons into the continuum states afiid collisions of . T, 2
the nucleons with the moving wall of the nuclear potential Al7) T'[nm fo (rEO)(ri(t+ ) dt (24)
10 ' " 2%y, |soscalar Monopole When the signal is chaotic, information about its past origins
autocorrelation function is lost. This means thak(7) —0 asr—, or the signal is
0.5 | . only correlated with its recent past. It is also expeddad)

of a chaotically modulated signal to be an irregularly modu-
lated waveform. The autocorrelation functions for isoscalar

0.0 and isovector oscillations are shown in Fig. 4. The normal-
ization isA(7=0)=1. For the isovector mod&(7) shows a

05 1 rapid decrease and the envelope appears as an irregular
(@) waveform. Therefore also this quantity indicates that the dy-
40 . . . . namical variable displays chaotic oscillations for the isovec-

0 200 400 600 800 1000 tor mode.

10 : : ' : _In our fzigst example'we have co.nsidered'monopole oscil-
%%ply Isovector Monopole Iat|0n§ in 208, for WhICh there exist experimental data on

autocorrelation function both isoscalar and isovector giant monopole resonances.
0.5 Thus our description of the dynamics of monopole oscilla-

tions is not just a completely artificial model, but in fact
corresponds to an experimentally observed physical system.
On the other hand?°®b is a large and complicated system,
in which many single-nucleon orbitals contribute to the col-
05 (b) 1 lective coordinate. In order to study in more detail the dy-
namics, it is more convenient to consider a light nucleus:
L L ! L 180. In Fig. 5 we compare the isoscalar and isovector mono-
0 200 400 600 800 1000 pole moments and the associated Fourier power spectra. For
the isoscalar mode a modulation of the signal is observed,
FIG. 4. Autocorrelation functions for isoscalé) and isovector and two strong peaks at approximately 20 MeV excitation
(b) monopole oscillations if%Ph. energy are found in the Fourier spectrum. A fragmentation in

0.0

-1.0
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FIG. 5. Time-dependent isoscalk@ and isovectofb) monopole moments and the Fourier spectra'f@. The effective force is NL1.

the Fourier spectrum is expected for such a light nucleusespecially if applied to the nuclear system, was found in Ref.
The behavior of the collective coordinate for the isovector{19]. Conditions under which nucleons inside a nucleus can
mode appears to be chaotic. The Fourier spectrum is stronglyndergo chaotic motion were studied. A self-consistent
fragmented in the energy region 15—45 MeV. The pseudanodel of separable forces was used in a semi classical ap-
phase spaces are compared in Fig. 6. The results are similproximation of the time-dependent Hartree-Fock equation.
to those for?®®Pb and indicate that isovector oscillations are The test particle method was used to solve the Vlasov equa-
chaotic. tion for the time evolution of the density matrix. Isoscalar
In Refs.[17,18 Blocki et al. analyzed the behavior of a quadrupole and octupole oscillations were investigated. It
purely classical gas of noninteracting point particles enclosedas shown that, both for quadrupole and octupole deforma-
in a hard-wall container, which undergoes periodic and adiations, chaotic single-particle dynamics leads to regular mo-
batic shape oscillations. The wall motion is not modified bytion of the collective coordinate, the multipole moment of
the collisions with the particles; i.e., the dynamics is notdeformation. The origin of the chaotic single-particle dynam-
self-consistent. Analyses of Poincargections and of ics was attributed to the exchange of energy between the
Lyapunov exponents showed that for low deformationsmotion of the individual test particles and the collective mo-
(I=2) the motion of particles is regular, whereas for highertion of the multipole coordinate. In particular, it was stressed
multipolarities (= 3) the scattering of segments of wall with that self-consistency is essential for the generation of regular
positive curvature leads to a divergence between trajectoriedynamics from an ensemble of single nucleons with chaotic
and therefore to chaotic motion. A somewhat different resulttrajectories. The relationship between chaoticity at the mi-

9 T
16 I I 16
O Isoscalar monopole O Isovector monopole
pseudo-phase space pseudo-phase space
8} -
A A
i i FIG. 6. Two-dimensional pseudo phase space
“ v for isoscalar(a) and isovector(b) monopole os-
cillations in *60.
7r .
6 L 1 -0.5 1
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FIG. 7. Time-dependent expectation valde® for the three single-neutron spherical shell model staged /2, 1p 3/2, and  1/2in
160. (a) corresponds to the isoscalar oscillations of the collective coordinate. In fi@nedsults for the isovector collective modes are
shown.

croscopic level and dissipation of the collective degrees ofier power spectra and the largest Lyapunov exponents.
freedom was also investigated in R€RO]. Classical par- Comparing the Fourier spectra, we notice that the differences
ticles were confined in a two-dimensional nuclear potentiabetween isoscalar and isovector oscillations are especially
whose walls undergo periodic shape oscillations of fixedbronounced for the 4 1/2 level. Much more fragmentation

multipolarity. The collective variable appears explicitly in js observed in the isovector spectrum, and the strength is
the Hamiltonian as an additional degree of freedom. A fullyshifted toward higher frequencies. The Fourier spectra for
self-consistent description of the dynamics of particle motionsoyector oscillations display pronounced peaks in the
and the collective coordinate was employed. Isoscalar mongyigher-frequency region. From the time series of the expec-
pole oscillations were studied and it was shown that Self'tation Values(r2(t)>31/2,p3/2,p1/2, we have also calculated the

qonsistgncy induces chaotic single-particle. motion. In parIargest Lyapunov exponents, shown in the right-hand panels
ticular, it was demonstrated how the coupling between th f Fig. 8. Lyapunov exponents provide a qualitative and

collective variable and single-particle dynamics induces o . : :
macroscopic dissipation. guantitative characterization of dynamical behavior. They

In a quantum description of nuclear dynamics, such as th@r® related to the e_xp(_)nennally fast divergence or conver-
one based on time-dependent relativistic mean-field theong€Nce Of nearby orbits in phase space. A system with one or
we cannot follow the trajectories of individual nucleons. In MOreé positive Lyapunov exponents is defined to be chaotic.
order to better understand the difference between the isoscal'® magnitude of the exponents reflects the time scale on
lar and isovector modes at the microscopic level, we conWhich system dynamics becomes unpredictable. The largest
sider the individual contributions of single-nucleon orbitals €xponents are displayed as function of evolution time in Fig.
to the collective coordinate, the time-dependent monopol®- They have been calculated by the method of RRef],
moment. In the case of°O (Z=N=8), protons and neu- Which allows the estimation of non-negative Lyapunov ex-
trons occupy only three spherical levels in the ground statgponents from a time series. For the 1/2 level the calcu-
1s 1/2, 1p 3/2, and b 1/2. Monopole oscillations do not lated exponent for oscillations that correspond to the isosca-
break the degeneracy; i.e., spherical symmetry is conservddr collective mode is consistent with the value zero,
during the time evolution of the nuclear system and we carindicating regular motion. For the isovector mode, the
follow the dynamics of each level. In Fig. 7 we display the Lyapunov exponent is positive and large. Therefore, oscilla-
time histories of the expectation values rdf for the three  tions of (r%(t))s,, are chaotic for collective isovector vibra-
neutron levels. In Fig. () we plot(r?(t))sy2p32p12 for the  tions. For the p 3/2 and I 1/2 levels all calculated expo-
isoscalar mode, for which the oscillations of the collectivenents are positive. For the isoscalar mode the small positive
coordinate are shown in Fig(&. Figure Tb) corresponds to  values reflect the observed fragmentation in the Fourier spec-
the isovector monopole oscillations displayed in Fi)5 trum. Those that correspond to isovector collective mode are

In contrast to the collective isoscalar and isovector mo-much larger and indicate that the dynamics is indeed chaotic.
ments shown in Fig. 5, in Figs.(@ and 7b) we plot the The corresponding Fourier spectra and largest Lyapunov ex-
same quantities, the expectation values ofor the neutron ~ ponents for proton levels are very similar. The only differ-
single-particle orbitals. Also the initial conditions for neutron ence is that, in addition to meson exchange forces, the pro-
motion are the same in both cases. The only difference is thns also feel the long range Coulomb interaction.
initial condition for protons. In the isoscalar case protons Similar results are obtained ff%Pb. We have calculated
oscillate in phase with neutrons. Proton and neutron oscillathe Fourier spectra and largest Lyapunov exponents for the
tions are out of phase for the isovector mode. In Fig) 8ne  time series of expectation valués?) for the 22 single-
observes regular modulated oscillations for all three neutroparticle spherical shell-model neutron states. Typical results
levels. For the isovector case the time histories display chaare shown in Fig. 9 for the orbitalsh111/2, 1h 9/2, and
otic oscillations. In Fig. 8 we display the corresponding Fou-2f 7/2. The column on the left corresponds to isoscalar
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FIG. 8. Fourier spectra and the largest Lyapunov exponents for the time-dependent expectatiofr ¥ainethe three single-neutron
spherical shell-model states 11/2, 1p 3/2, and b 1/2 in 1%0. Dashed lines indicate the isoscalar collective monopole mode; solid lines
correspond to isovector collective oscillations.

monopole collective oscillations; in the central panels thetime-dependent relativistic mean-field theory. These oscilla-
results for the isovector collective mode are shown. Both fotions correspond to the most elementary collective nuclear
isoscalar and isovector oscillatio(fsig. 1), the initial condi-  modes, the giant resonances. In order to investigate the dy-
tions for neutron motion are the same. All calculatednamics of collective vibrations, we have analyzed time-
Lyapunov exponents are positive, and therefore seem to ildependent and self-consistent calculations that reproduce the
dicate that the underlying microscopic dynamics is chaoticexperimental data on monopole giant resonances in spherical
In general, we observe much more fragmentation in the Founclej. Because of the self-consistent time evolution, the
rier spectra of oscillations that correspond to the isovectopclear system is nonlinear and one expects chaotic dynam-
mode, and the resulting Lyapunov exponents have also larggts for specific initial conditions. In particular, we have stud-
values. The interesting result of course is that for the IS0SC8a the difference in the dynamics of isoscalar and isovector

lar case we observe regular oscillations of the collective variy, o .tiye modes. Time histories, Fourier spectra, state-space

able. This would be in agreement with the results reported ”E)Iots Poincare sections. autocorrelation functions. and

Ref.[19], where chaotic single-particle motion was found in Lvapunov exoonents have been used to characterize the non-
coexistence with regular collective dynamics. For the isoveci.y P ¢ P d to identify chaoti ilati it has b
tor mode, on the other hand, the collective monopole mo-€ar system and to iden ify chaotic oscillations. It has been

ment displays chaotic oscillations. This is explained by theshown that the oscillations of the collective coordinate can
fact that protons and neutrons effectively move in two self-be characterized as regular for the isoscalar mode, and that
consistent potentials that oscillate out of phase. For exampl&1€y become chaotic when initial conditions correspond to
when neutrons move inward, they scatter on the potentialhe isovector mode. Our results also confirm the conclusions
wall with positive curvature that is created by protons mov-0f @ number of studies, which have shown how a regular
ing outward. This will lead to pseudorandom motion of thecolle'ctlve mode can coexist with chaotic §|ngle-partlcle dy-
nucleons and dissipation of collective oscillations. namics. However, we have shown that this is the case only
for isoscalar modes, that is, only if one considers the motion
of a single type of particles. When protons and neutrons
move out of phase, as happens for isovector modes, the re-
Isoscalar and isovector collective monopole oscillations insulting dynamics of the collective coordinate exhibits chaotic
spherical nuclei have been analyzed within the framework obehavior. Of course, analogous considerations apply also for

IV. CONCLUSIONS
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FIG. 9. Fourier spectra and the largest Lyapunov exponents for the time-dependent expectatiofr Yalnebe 1h 11/2, 1h 9/2, and
2f 7/2 single-neutron spherical shell-model state&’f®b. Results that correspond to the isoscalar collective monopole mode are shown on
the left; those for the isovector mode are in the center. Lyapunov exponents are displayed in right-hand side panels.

higher multipolarities, for example, isoscalar and isovectoresults similar to the monopole resonances could be ex-
giant quadrupole resonances. Because of numerical profected. Work along these lines is in progress.

lems, for quadrupole oscillations our computer codes could
not propagate the nuclear system to very long times. How- . ] )
ever, a preliminary analysis of isoscalar and isovector quad- 1 NS Work has been supported in part by the Bundesmin-

- . terium fu Bild dF h der Contract No. 06
rupole oscillations in‘%0 (T,= 500 fmk) have shown that E?MergJ?rg (r Bridung Und rorschung under L-ontract o
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