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Regular and chaotic dynamics in time-dependent relativistic mean-field theory

D. Vretenar,* P. Ring, G. A. Lalazissis, and W. Po¨schl
Physik-Department-der-Technischen-Universita¨t München, D-85748 Garching, Germany

~Received 12 June 1997; revised manuscript received 14 August 1997!

Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are
described in the framework of time-dependent relativistic mean-field theory. Time-dependent and self-
consistent calculations that reproduce experimental data on monopole resonances in208Pb show that the
motion of the collective coordinate is regular for isoscalar oscillations, and that it becomes chaotic when initial
conditions correspond to the isovector mode. Regular collective dynamics coexists with chaotic oscillations on
the microscopic level. Time histories, Fourier spectra, state-space plots, Poincare´ sections, autocorrelation
functions, and Lyapunov exponents are used to characterize the nonlinear system and to identify chaotic
oscillations. Analogous considerations apply to higher multipolarities.@S1063-651X~97!11711-1#

PACS number~s!: 05.45.1b, 24.60.Lz
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I. INTRODUCTION

In the last two decades many studies have been repo
in which the atomic nucleus has been used as a labora
both experimentally and theoretically, for investigating t
transition from order to chaos in quantum dynamical syste
~for a recent review see@1#!. Most of these studies hav
concentrated on two major aspects:~i! generic signatures o
chaos in local fluctuations and correlations of nuclear le
distributions and~ii ! chaos in microscopic and collective dy
namics of realistic many-body systems. In the first case,
natures of quantum chaos have also been studied in the
plicated structure of wave functions and randomness
matrix elements of physical operators. On the other hand,
nature of collective nuclear dynamics has been investiga
with particular emphasis on the stability of low-lying nucle
modes in relation to one-body dissipation caused by the
formation of the nuclear potential, cluster effects, and Co
olis forces. The most elementary collective modes in nu
are giant resonances. These are highly collective nuclea
citations in which a large fraction of nucleons participa
They can be described as damped harmonic and anharm
density oscillations around the equilibrium ground state.
ant resonances occur over the whole periodic table and
characteristic parameters are smooth functions of the m
number. A mean-field model therefore provides an appro
ate framework for the description of giant resonances. Re
lar and chaotic dynamics in giant nuclear oscillations h
been the subject of a number of studies. What has eme
as a very interesting result is that an undamped collec
mode may coexist with chaotic single-particle motion. It a
pears that the slowly vibrating self-consistent mean field c
ated by the nucleons averages out the random componen
their motion. In all investigations the motion of only on
type of particles has been considered, that is, only the
namics of isoscalar collective modes.

In the present article we study the difference in the d
namics of isoscalar and isovector collective modes. In p
ticular, we describe isoscalar and isovector monopole os

*On leave from University of Zagreb, Zagreb, Croatia
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lations in spherical nuclei, but analogous consideratio
apply to higher multipolarities. The dynamics of nuclear v
brations is analyzed in the framework of time-depend
relativistic mean-field~TDRMF! theory. The model repre
sents a relativistic generalization of the time-depend
Hartree-Fock approach. Nuclear dynamics is described
the simultaneous evolution ofA single-particle Dirac spinors
in the time-dependent mean fields. Frequencies of eig
modes are determined from a Fourier analysis of dynam
quantities. In this microscopic description, self-consist
mean-field calculations are performed for static ground-s
properties and time-dependent calculations for monopole
citations. Because the time evolution is calculated s
consistently, the system is intrinsically nonlinear. An adva
tage of the time-dependent approach is that no assump
about the nature of the mode of vibrations has to be ma

The article is organized as follows. In Sec. II we prese
the essential features of the time-dependent relativistic me
field model, as well as some details of its application
spherical nuclei. Time-dependent calculations of isosca
and isovector monopole oscillations in16O and 208Pb are
described in Sec. III. Results of a number of diagnostic te
that are used to identify chaotic oscillations in the nucle
system are discussed and compared with earlier work
summary of our results is presented in Sec. IV.

II. OUTLINE OF THE MODEL

The dynamics of collective vibrations in spherical nuc
will be described in the framework of relativistic mean-fie
theory @2–5#. In relativistic quantum hadrodynamics th
nucleus is described as a system of Dirac nucleons wh
interact through the exchange of virtual mesons and phot
The Lagrangian density of the model is

L5 c̄ ~ ig•]2m!c1
1

2
~]s!22U~s!2

1

4
VmnVmn

1
1

2
mv

2 v22
1

4
RW mnRW mn1

1

2
mr

2rW 22
1

4
FmnFmn2gsc̄sc

2gvc̄g•vc2grc̄g•rW tWc2ec̄g•A
~12t3!

2
c. ~1!
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The Dirac spinorc denotes the nucleon with massm. ms ,
mv , andmr are the masses of thes meson, thev meson,
and ther meson, andgs , gv , andgr are the corresponding
coupling constants for the mesons to the nucleon.U(s) de-
notes the nonlinears self-interaction,

U~s!5
1

2
ms

2s21
1

3
g2s31

1

4
g3s4, ~2!

andVmn, RW mn, andFmn are field tensors@2#.
The coupled equations of motion are derived from

Lagrangian density~1!. The Dirac equation for the nucleon
is

i ] tc i5FaS 2 i“2gvv2grtWr¢2e
~12t3!

2
AD

1b~m1gss!1gvv01grtWrW 01e
~12t3!

2
A0Gc i ,

~3!

and the Klein-Gordon equations for the mesons are

~] t
22D1ms

2 !s52gsrs2g2s22g3s3, ~4!

~] t
22D1mv

2 !vm5gv j m , ~5!

~] t
22D1mr

2!rW m5gr jWm , ~6!

~] t
22D!Am5e jm

em. ~7!

In the relativistic mean-field approximation theA nucleons
described by single-particle spinorsc i( i 51,2, . . . ,A) are
assumed to form theA-particle Slater determinantuF& and to
move independently in the classical meson fields. T
sources of the fields, i.e., densities and currents, are ca
lated in theno-seaapproximation@7#: the scalar density

rs5(
i 51

A

c̄ ic i , ~8!

the isoscalar baryon current

j m5(
i 51

A

c̄ ig
mc i , ~9!

the isovector baryon current

jW m5(
i 51

A

c̄ ig
mtWc i , ~10!

the electromagnetic current for the photon field,

j em
m 5(

i 51

A

c̄ ig
m

12t3

2
c i , ~11!

where the summation is over all occupied states in the Sl
determinantuF&. Negative-energy states do not contribute
the densities in theno-seaapproximation of the stationar
solutions. However, negative energy contributions are
cluded implicitly in the time-dependent calculation, since t
e

e
u-

er

-
e

Dirac equation is solved at each step in time for a differ
basis set@6,7#. Negative-energy components with respect
the original ground-state basis are taken into account a
matically, even if at each time theno-seaapproximation is
applied. It is also assumed that nucleon single-particle st
do not mix isospin.

The ground state of a nucleus is described by the stat
ary self-consistent solution of the coupled system of eq
tions ~3!–~7!, for a given number of nucleons and a set
coupling constants and masses. The solution for the gro
state specifies part of the initial conditions for the tim
dependent problem. For a given set of initial conditions, i
initial values for the densities and currents in Eqs.~8!–~11!,
the model describes the time evolution ofA single-particle
wave functions in the time-dependent mean fields. Reta
tion effects for the meson fields are not included; i.e.,
time derivatives] t

2 in the equations of motions for the meso
fields are neglected. This is justified by the large masse
the meson propagators, causing a short range of the co
sponding meson exchange forces. Since there is no sys
atic procedure to derive the initial conditions that charact
ize the motion of a specific mode of the nuclear system,
description of nuclear dynamics as a time-dependent init
value problem is intrinsically semiclassical. The theory c
be quantized by the requirement that there exist tim
periodic solutions of the equations of motion, which gi
integer multiples of Planck’s constant for the classical act
along one period@8#. For giant resonances the time depe
dence of collective dynamical quantities is actually not pe
odic, since generally giant resonances are not station
states of the mean-field Hamiltonian. The coupling of t
mean field to the particle continuum allows for the decay
giant resonances by direct escape of particles. In the limi
small amplitude oscillations, however, the energy obtain
from the frequency of the oscillation coincides with the e
citation energy of the collective state. In Refs.@7,9,8,11# we
have shown that the model reproduces reasonably well
experimental data on giant resonances in spherical nucle

In the present article we apply the model to isoscalar a
isovector monopole oscillations in spherical nuclei. In th
microscopic description, self-consistent mean-field calcu
tions are performed for static ground-state properties
time-dependent calculations for monopole excitations. B
cause of the self-consistent time evolution, the system is
trinsically nonlinear. For a system with spherical symmet
the nucleon single-particle spinor is characterized by the
gular momentumj , its z projectionm, the parityp, and the

isospint356 1
2 for neutrons and protons:

c~r ,t,s,t3!5
1

r S f ~r !F l jm~u,w,s!

ig~r !F l̃ jm~u,w,s!
D e2 iEtxt~ t3!.

~12!

xt is the isospin function, the orbital angular momental and
l̃ are determined byj and the parityp, f (r ) and g(r ) are
radial functions, andF l jm is the tensor product of the orbita
and spin functions:

F l jm~u,w,s!5 (
msml

^ 1
2 mslml u jm&Ylml

~u,w!xms
~s!.

~13!
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In order to excite monopole oscillations, the spherical so
tion for the ground state has to be initially compressed
radially expanded by scaling the radial coordinate. The a
plitudes f mon andgmon of the Dirac spinor are defined as

f mon~r mon!5~11a! f ~r !, gmon~r mon!5~11a!g~r !.
~14!

The new coordinates are

r mon5~11a!r . ~15!

For isoscalar oscillations the monopole deformations of
proton and neutron densities have the same sign. To ex
isovector oscillations, the initial monopole deformation p
rameters of protons and neutrons must have opposite s
After the initial deformation~14!, the proton and neutron
densities have to be normalized.

The time-dependent Dirac equation~3! is reduced to a se
of coupled first-order partial differential equations for t
complex amplitudesf andg of proton and neutron states,

i ] t f 5~V01gss! f 1S ] r2
k

r
2 iVr Dg, ~16!

i ] tg5~V02gss22m!g2S ] r1
k

r
2 iVr D f , ~17!

wherek56( j 11/2) for j 5 l 71/2, and the indices 0 andr
denote the time and radial components of the vector fiel

Vm5gvvm1grr3
mt31e

~12t3!

2
Am. ~18!

For a given set of initial conditions, the equations of moti
propagate the nuclear system in time. The potentials are
lutions of the Klein-Gordon equations

S 2
]2

]r 2 2
2

r

]

]r
1mf

2 Df~r !5sf~r !, ~19!

wheremf are meson masses forf5s, v, andr, and zero
for the photon. The source terms are calculated from E
~8!–~11! using in each time step the latest values for
nucleon amplitudes. The meson fields and electromagn
potentials are calculated from

f~r !5E
0

`

Gf~r ,r 8!sf~r 8!r 82dr8, ~20!

where, for massive fields,

Gf~r ,r 8!5
1

2mf

1

rr 8
~emfur 2r 8u2e2mfur 1r 8u! ~21!

and, for the Coulomb field,

GC~r ,r 8!5
1

r
for r .r 8,

GC~r ,r 8!5
1

r 8
for r ,r 8. ~22!
-
r
-

e
ite
-
ns.

o-

s.
e
tic

The collective dynamical variables that characterize vib
tions of a nucleus are defined as expectation values of sin
particle operators in the time-dependent Slater determin
uF(t)& of occupied states. In the framework of the TDRM
model the wave function of the nuclear system is a Sla
determinant at all times. For isoscalar monopole vibratio
the time-dependent monopole moment is defined as

^r 2~ t !&5
1

A
^F~ t !ur 2uF~ t !&. ~23!

The corresponding isovector monopole moment is simply

^r p
2~ t !&2^r n

2~ t !&.

Fourier transforms of the collective dynamical variab
determine the frequencies of eigenmodes.

III. ISOSCALAR AND ISOVECTOR MONOPOLE
OSCILLATIONS

The study of isoscalar monopole resonances in nuclei p
vides an important source of information on the nuclear m
ter compression modulusKnm. This quantity is crucial in the
description of properties of nuclei, supernova explosio
neutron stars, and heavy ion collisions. Modern nonrelativ
tic Hartree-Fock plus random-phase-approximation~RPA!
calculations, using both Skyrme and Gogny effective int
actions, indicate that the value ofKnm should be in the range
210–220 MeV@12#. In the framework of relativistic mean
field theory, on the other hand, calculations based on an
fective interaction@10# with nuclear matter compressio
modulusKnm'250–270 MeV are in better agreement wi
available data on spherical nuclei@11#. The complete experi-
mental data set on isoscalar giant monopole resona
~GMR! has been recently analyzed by Shlomo and You
blood @13#. In Fig. 1 we display results of time-depende
relativistic mean-field calculations of isoscalar and isovec
oscillations in 208Pb. The experimental isoscalar GMR e
ergy in 208Pb is well established at 13.760.3 MeV. Experi-
mental data on isovector giant monopole resonances
much less known. The systematics of excitation energ
does not, in general, depend on the nuclear matter comp
sion modulus. The experimental value for the isovec
GMR in 208Pb is 2663 MeV @14#. We have calculated the
ground state with the NL1@15# parameter set of the effectiv
Lagrangian. This effective force has been extensively use
the description of properties of finite nuclei along the vall
of b stability @5#. For NL1 (Knm5211.7 MeV!, we expect
the calculated excitation energy for the isoscalar mode to
approximately 1–2 MeV lower than the average experim
tal value. However, the precise value is not important in
present consideration. For the initial deformation parame
in Eq. ~14! we have useda50.2. In the isoscalar case bot
proton and neutron densities are radially expanded, while
the isovector mode the proton density is initially compress
by the same amount. Therefore, although the initial con
tions are different, in both cases we follow the time evoluti
of the same system.

In Fig. 1~a! we plot the time history of the isoscala
monopole moment̂r 2(t)&, and in Fig. 1~b! the correspond-
ing isovector moment is shown. The isoscalar mode displ
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FIG. 1. Time-dependent isoscalar^r 2& ~a! and isovector̂ r p
2&2^r n

2& ~b! monopole moments and the corresponding Fourier power spe
for 208Pb. The parameter set of the effective Lagrangian is NL1.
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regular undamped oscillations, while for the isovector mo
we observe strongly damped anharmonic oscillations. In
right-hand panels we plot the corresponding Fourier po
spectra. The evolution timeTfinal53000 fm/c determines
the numerical resolutionDE52p\c/Tfinal5'0.4 MeV in
the frequency domain. The Fourier power spectra are ca
lated by fast Fourier transforming~FFT! using data window-
ing with the Welch window function. We have verified th
the positions of the main peaks do not depend on the ch
of the window function. We estimate the numerical accura
to '0.5 MeV. As one would expect for a heavy nucleu
there is very little spectral fragmentation in the isosca
channel, and a single mode dominates at the excitation
ergy of 11 MeV. The Fourier spectrum of the isovector mo
is strongly fragmented. However, the main peaks are fo
in the energy region 25–30 MeV, in agreement with t
experimental data.

For the isoscalar mode, the time history of the monop
e
e
r
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y
,
r
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e
d

e

moment and the Fourier spectrum show that the oscillati
of the collective coordinate are regular. On the other ha
the appearance of a broad spectrum of frequencies seem
indicate that the isovector oscillations are chaotic. A diag
sis of chaotic vibrations would imply that one has a cle
definition of such motion. For a quantum system, howev
the concept of chaos, especially in time-dependent proble
is not well defined. And although our description of nucle
vibrations is semiclassical, quantum effects like the Pa
principle are present in the initial conditions and during t
dynamical evolution. A number of diagnostic tests can h
to identify chaotic oscillations in physical systems@16#, and
some of them can be applied in the present consideration
Figs. 2–4 we display some additional qualitative measu
which can be used to characterize the response of our
linear system. In Fig. 2 we have constructed the tw
dimensional time-delayed pseudo phase space for isos
~a! and isovector~b! oscillations shown in Fig. 1. Since in
ce
FIG. 2. Two-dimensional pseudo phase spa
for isoscalar~a! and isovector~b! monopole os-
cillations in 208Pb.
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FIG. 3. Poincare´ sections for isoscalar~a! and
isovector~b! monopole oscillations in208Pb.
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formation is available on the time evolution of just one va
able, the collective coordinate, one plots the signal ver
itself, but delayed or advanced by a fixed time const
@^r 2(t)&,^r 2(t1t)&#. The idea is that the signal^r 2(t1t)& is
related tô ṙ 2(t)&, and should have properties similar to tho
in the classical phase plane@^r 2(t)&,^ ṙ 2(t)&#. The choice of
the time delayt is not crucial, except to avoid a natur
period of the system. If the motion is chaotic, the trajector
in the phase space do not close. For the pseudo phase p
shown in Fig. 2, we have takent520 fm/c. The phase spac
trajectories for the isoscalar mode are closed ellipses, i
cating regular oscillations. For the isovector oscillations,
the other hand, the trajectories are completely chaotic.
strong damping results from one-body processes:~i! escape
of nucleons into the continuum states and~ii ! collisions of
the nucleons with the moving wall of the nuclear potent

FIG. 4. Autocorrelation functions for isoscalar~a! and isovector
~b! monopole oscillations in208Pb.
s
t

s
nes

i-
n
e

l

generated by the self-consistent mean fields. In Fig. 3
display the corresponding Poincare´ sections constructed
from three-dimensional time-delayed pseudo phase sp
@^r 2(t)&,^r 2(t1t)&,^r 2(t12t)&#, with t520 fm/c. The
Poincare´ maps are shown in the planes^r 2(t)&535 fm2 for
the isoscalar mode and^r 2(t)&529.55 fm2 for the isovector
mode, respectively. The Poincare´ map for the isoscalar mod
consists of two sets of closely located points and theref
confirms regular oscillations. For the isovector oscillatio
the Poincare´ map appears as a cloud of unorganized points
the phase plane. Such a map indicates stochastic mo
Another measure that is related to the Fourier transform
the autocorrelation function

A~t!5 lim
T→`

E
0

T

^r 2~ t !&^r 2~ t1t!& dt. ~24!

When the signal is chaotic, information about its past orig
is lost. This means thatA(t)→0 ast→`, or the signal is
only correlated with its recent past. It is also expectedA(t)
of a chaotically modulated signal to be an irregularly mod
lated waveform. The autocorrelation functions for isosca
and isovector oscillations are shown in Fig. 4. The norm
ization isA(t50)51. For the isovector modeA(t) shows a
rapid decrease and the envelope appears as an irre
waveform. Therefore also this quantity indicates that the
namical variable displays chaotic oscillations for the isov
tor mode.

In our first example we have considered monopole os
lations in 208Pb, for which there exist experimental data o
both isoscalar and isovector giant monopole resonan
Thus our description of the dynamics of monopole oscil
tions is not just a completely artificial model, but in fa
corresponds to an experimentally observed physical sys
On the other hand,208Pb is a large and complicated system
in which many single-nucleon orbitals contribute to the c
lective coordinate. In order to study in more detail the d
namics, it is more convenient to consider a light nucle
16O. In Fig. 5 we compare the isoscalar and isovector mo
pole moments and the associated Fourier power spectra
the isoscalar mode a modulation of the signal is observ
and two strong peaks at approximately 20 MeV excitat
energy are found in the Fourier spectrum. A fragmentation
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FIG. 5. Time-dependent isoscalar~a! and isovector~b! monopole moments and the Fourier spectra for16O. The effective force is NL1.
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the Fourier spectrum is expected for such a light nucle
The behavior of the collective coordinate for the isovec
mode appears to be chaotic. The Fourier spectrum is stro
fragmented in the energy region 15–45 MeV. The pseu
phase spaces are compared in Fig. 6. The results are si
to those for208Pb and indicate that isovector oscillations a
chaotic.

In Refs. @17,18# Blocki et al. analyzed the behavior of
purely classical gas of noninteracting point particles enclo
in a hard-wall container, which undergoes periodic and ad
batic shape oscillations. The wall motion is not modified
the collisions with the particles; i.e., the dynamics is n
self-consistent. Analyses of Poincare´ sections and of
Lyapunov exponents showed that for low deformatio
( l 52) the motion of particles is regular, whereas for high
multipolarities (l>3) the scattering of segments of wall wit
positive curvature leads to a divergence between trajecto
and therefore to chaotic motion. A somewhat different res
s.
r
ly
o
ilar

d
-

t

s
r

es
t,

especially if applied to the nuclear system, was found in R
@19#. Conditions under which nucleons inside a nucleus c
undergo chaotic motion were studied. A self-consist
model of separable forces was used in a semi classical
proximation of the time-dependent Hartree-Fock equati
The test particle method was used to solve the Vlasov eq
tion for the time evolution of the density matrix. Isoscal
quadrupole and octupole oscillations were investigated
was shown that, both for quadrupole and octupole deform
tions, chaotic single-particle dynamics leads to regular m
tion of the collective coordinate, the multipole moment
deformation. The origin of the chaotic single-particle dyna
ics was attributed to the exchange of energy between
motion of the individual test particles and the collective m
tion of the multipole coordinate. In particular, it was stress
that self-consistency is essential for the generation of reg
dynamics from an ensemble of single nucleons with cha
trajectories. The relationship between chaoticity at the
ce
FIG. 6. Two-dimensional pseudo phase spa
for isoscalar~a! and isovector~b! monopole os-
cillations in 16O.
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FIG. 7. Time-dependent expectation values^r 2& for the three single-neutron spherical shell model states 1s 1/2, 1p 3/2, and 1p 1/2 in
16O. ~a! corresponds to the isoscalar oscillations of the collective coordinate. In panel~b! results for the isovector collective modes a
shown.
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croscopic level and dissipation of the collective degrees
freedom was also investigated in Ref.@20#. Classical par-
ticles were confined in a two-dimensional nuclear poten
whose walls undergo periodic shape oscillations of fix
multipolarity. The collective variable appears explicitly
the Hamiltonian as an additional degree of freedom. A fu
self-consistent description of the dynamics of particle mot
and the collective coordinate was employed. Isoscalar mo
pole oscillations were studied and it was shown that s
consistency induces chaotic single-particle motion. In p
ticular, it was demonstrated how the coupling between
collective variable and single-particle dynamics induc
macroscopic dissipation.

In a quantum description of nuclear dynamics, such as
one based on time-dependent relativistic mean-field the
we cannot follow the trajectories of individual nucleons.
order to better understand the difference between the iso
lar and isovector modes at the microscopic level, we c
sider the individual contributions of single-nucleon orbita
to the collective coordinate, the time-dependent monop
moment. In the case of16O (Z5N58), protons and neu
trons occupy only three spherical levels in the ground st
1s 1/2, 1p 3/2, and 1p 1/2. Monopole oscillations do no
break the degeneracy; i.e., spherical symmetry is conse
during the time evolution of the nuclear system and we
follow the dynamics of each level. In Fig. 7 we display t
time histories of the expectation values ofr 2 for the three
neutron levels. In Fig. 7~a! we plot ^r 2(t)&s1/2,p3/2,p1/2 for the
isoscalar mode, for which the oscillations of the collecti
coordinate are shown in Fig. 5~a!. Figure 7~b! corresponds to
the isovector monopole oscillations displayed in Fig. 5~b!.

In contrast to the collective isoscalar and isovector m
ments shown in Fig. 5, in Figs. 7~a! and 7~b! we plot the
same quantities, the expectation values ofr 2 for the neutron
single-particle orbitals. Also the initial conditions for neutro
motion are the same in both cases. The only difference is
initial condition for protons. In the isoscalar case proto
oscillate in phase with neutrons. Proton and neutron osc
tions are out of phase for the isovector mode. In Fig. 7~a! one
observes regular modulated oscillations for all three neu
levels. For the isovector case the time histories display c
otic oscillations. In Fig. 8 we display the corresponding Fo
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rier power spectra and the largest Lyapunov expone
Comparing the Fourier spectra, we notice that the differen
between isoscalar and isovector oscillations are espec
pronounced for the 1s 1/2 level. Much more fragmentation
is observed in the isovector spectrum, and the strengt
shifted toward higher frequencies. The Fourier spectra
isovector oscillations display pronounced peaks in
higher-frequency region. From the time series of the exp
tation valueŝ r 2(t)&s1/2,p3/2,p1/2, we have also calculated th
largest Lyapunov exponents, shown in the right-hand pan
of Fig. 8. Lyapunov exponents provide a qualitative a
quantitative characterization of dynamical behavior. Th
are related to the exponentially fast divergence or conv
gence of nearby orbits in phase space. A system with on
more positive Lyapunov exponents is defined to be chao
The magnitude of the exponents reflects the time scale
which system dynamics becomes unpredictable. The lar
exponents are displayed as function of evolution time in F
9. They have been calculated by the method of Ref.@21#,
which allows the estimation of non-negative Lyapunov e
ponents from a time series. For the 1s 1/2 level the calcu-
lated exponent for oscillations that correspond to the isos
lar collective mode is consistent with the value ze
indicating regular motion. For the isovector mode, t
Lyapunov exponent is positive and large. Therefore, osci
tions of ^r 2(t)&s1/2 are chaotic for collective isovector vibra
tions. For the 1p 3/2 and 1p 1/2 levels all calculated expo
nents are positive. For the isoscalar mode the small pos
values reflect the observed fragmentation in the Fourier sp
trum. Those that correspond to isovector collective mode
much larger and indicate that the dynamics is indeed chao
The corresponding Fourier spectra and largest Lyapunov
ponents for proton levels are very similar. The only diffe
ence is that, in addition to meson exchange forces, the
tons also feel the long range Coulomb interaction.

Similar results are obtained for208Pb. We have calculated
the Fourier spectra and largest Lyapunov exponents for
time series of expectation values^r 2& for the 22 single-
particle spherical shell-model neutron states. Typical res
are shown in Fig. 9 for the orbitals 1h 11/2, 1h 9/2, and
2 f 7/2. The column on the left corresponds to isosca
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FIG. 8. Fourier spectra and the largest Lyapunov exponents for the time-dependent expectation values^r 2& in the three single-neutron
spherical shell-model states 1s 1/2, 1p 3/2, and 1p 1/2 in 16O. Dashed lines indicate the isoscalar collective monopole mode; solid
correspond to isovector collective oscillations.
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monopole collective oscillations; in the central panels
results for the isovector collective mode are shown. Both
isoscalar and isovector oscillations~Fig. 1!, the initial condi-
tions for neutron motion are the same. All calculat
Lyapunov exponents are positive, and therefore seem to
dicate that the underlying microscopic dynamics is chao
In general, we observe much more fragmentation in the F
rier spectra of oscillations that correspond to the isovec
mode, and the resulting Lyapunov exponents have also la
values. The interesting result of course is that for the isos
lar case we observe regular oscillations of the collective v
able. This would be in agreement with the results reporte
Ref. @19#, where chaotic single-particle motion was found
coexistence with regular collective dynamics. For the isov
tor mode, on the other hand, the collective monopole m
ment displays chaotic oscillations. This is explained by
fact that protons and neutrons effectively move in two se
consistent potentials that oscillate out of phase. For exam
when neutrons move inward, they scatter on the poten
wall with positive curvature that is created by protons mo
ing outward. This will lead to pseudorandom motion of t
nucleons and dissipation of collective oscillations.

IV. CONCLUSIONS

Isoscalar and isovector collective monopole oscillations
spherical nuclei have been analyzed within the framework
e
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time-dependent relativistic mean-field theory. These osci
tions correspond to the most elementary collective nuc
modes, the giant resonances. In order to investigate the
namics of collective vibrations, we have analyzed tim
dependent and self-consistent calculations that reproduce
experimental data on monopole giant resonances in sphe
nuclei. Because of the self-consistent time evolution,
nuclear system is nonlinear and one expects chaotic dyn
ics for specific initial conditions. In particular, we have stu
ied the difference in the dynamics of isoscalar and isovec
collective modes. Time histories, Fourier spectra, state-sp
plots, Poincare´ sections, autocorrelation functions, an
Lyapunov exponents have been used to characterize the
linear system and to identify chaotic oscillations. It has be
shown that the oscillations of the collective coordinate c
be characterized as regular for the isoscalar mode, and
they become chaotic when initial conditions correspond
the isovector mode. Our results also confirm the conclusi
of a number of studies, which have shown how a regu
collective mode can coexist with chaotic single-particle d
namics. However, we have shown that this is the case o
for isoscalar modes, that is, only if one considers the mot
of a single type of particles. When protons and neutro
move out of phase, as happens for isovector modes, the
sulting dynamics of the collective coordinate exhibits chao
behavior. Of course, analogous considerations apply also
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FIG. 9. Fourier spectra and the largest Lyapunov exponents for the time-dependent expectation values^r 2& in the 1h 11/2, 1h 9/2, and
2 f 7/2 single-neutron spherical shell-model states in208Pb. Results that correspond to the isoscalar collective monopole mode are sho
the left; those for the isovector mode are in the center. Lyapunov exponents are displayed in right-hand side panels.
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higher multipolarities, for example, isoscalar and isovec
giant quadrupole resonances. Because of numerical p
lems, for quadrupole oscillations our computer codes co
not propagate the nuclear system to very long times. H
ever, a preliminary analysis of isoscalar and isovector qu
rupole oscillations in16O (Tfinal5500 fm/c! have shown that
r
b-

ld
-

d-

results similar to the monopole resonances could be
pected. Work along these lines is in progress.
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